Stability Theory for High Order Equations
نویسنده
چکیده
A Liapunov type stability theory for high order systems of differential equations is developed. This is done by reduction to the classical case, using the theory of polynomial models.
منابع مشابه
The Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order
Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...
متن کاملFree Vibration and Buckling Analysis of Sandwich Panels with Flexible Cores Using an Improved Higher Order Theory
In this paper, the behavior of free vibrations and buckling of the sandwich panel with a flexible core was investigated using a new improved high-order sandwich panel theory. In this theory, equations of motion were formulated based on shear stresses in the core. First-order shear deformation theory was applied for the procedures. In this theory, for the first time, incompatibility problem of...
متن کاملA High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations
In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...
متن کاملSymplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects
In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...
متن کاملFirst-Order Formulation for Functionally Graded Stiffened Cylindrical Shells Under Axial Compression
The buckling analysis of stiffened cylindrical shells by rings and stringers made of functionally graded materials subjected to axial compression loading is presented. It is assumed that the material properties vary as a power form of the thickness coordinate variable. The fundamental relations, the equilibrium and stability equations are derived using the first order shear deformation theory. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001